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ABSTRACT

This study presents an observation-driven technique to delineate the dominant boundaries and temporal

shifts between different hydrologic regimes over the contiguous United States (CONUS). The energy- and

water-limited evapotranspiration regimes as well as percolation to the subsurface are hydrologic processes

that dominate the loss of stored water in the soil following precipitation events. Surface soil moisture

estimates from the NASA Soil Moisture Active Passive (SMAP) mission, over three consecutive summer

seasons, are used to estimate the soil water loss function. Based on analysis of the rates of soil moisture

dry-downs, the loss function is the conditional expectation of negative increments in the soil moisture series

conditioned on soil moisture itself. An unsupervised classification scheme (with cross validation) is then

implemented to categorize regions according to their dominant hydrological regimes based on their estimated

loss functions. An east–west divide in hydrologic regimes over CONUS is observed with large parts of the

western United States exhibiting a strong water-limited evapotranspiration regime during most of the times.

The U.S. Midwest and Great Plains show transitional behavior with both water- and energy-limited regimes

present. Year-to-year shifts in hydrologic regimes are also observed along with regional anomalies due to

moderate drought conditions or above-average precipitation. The approach is based on remotely sensed

surface soil moisture (approximately top 5 cm) at a resolution of tens of kilometers in the presence of soil

texture and land cover heterogeneity. The classification therefore only applies to landscape-scale effective

conditions and does not directly account for deeper soil water storage.

1. Introduction

The profile of soil moisture—from surface to root

zone—partially determines water and heat fluxes between

the land and atmosphere depending on the dominant

evapotranspiration regime (Seneviratne et al. 2010), af-

fects the dynamics of soil respiration (Manzoni et al. 2012),

and drives the growth of crops and natural vegetation
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(Rosenzweig et al. 2002). Weather forecasting and climate

modeling efforts, especially at large spatial scales, have

long been recognized to require knowledge of the soil

moisture profile to partition the components of the surface

energy balance (Dirmeyer et al. 2000; Koster and Suarez

2003) The short-term evolution of weather and seasonal

climate are affected by this partitioning (Vivoni et al. 2008;

Seneviratne et al. 2010).

Recent satellite microwave remote sensing missions

such as the European Space Agency’s Soil Moisture

Ocean Salinity (SMOS; Kerr et al. 2001) and the NASA

Soil Moisture Active Passive (SMAP; Entekhabi et al.

2010) mission have emerged that provide global esti-

mates of soil moisture at about 40-km spatial resolu-

tion from daily to 3-day intervals. Operating within the

L-band (1.41GHz) regime of the microwave spectrum,

these platforms are capable of sensing water content

within the topsoil, and their soil moisture products typ-

ically represent an integrated depth of 50mm, hence

only surface soil moisture (SSM; u). To overcome limi-

tations imposed by the lack of frequent and global

observations, a variety of assimilation and land surface

modeling efforts have, in the past, been developed

(Wagner et al. 1999; Sabater et al. 2007; Reichle et al.

2007; Albergel et al. 2008; Reichle et al. 2008; Kumar

et al. 2009) to link and relate surface moisture to deeper

soil moisture.

Even though SSM constitutes only a fraction of the

total distribution of terrestrial water (Gleeson et al. 2015),

it has profound implications on the water, carbon, and

energy cycles. It rests at the critical boundary between

land and the atmosphere and generally exhibits more

temporal variability compared to deeper root-zone

moisture. However, the dynamics of surface and root-

zone soil moisture are not independent, and indeed share

some mutual information. They are physically linked via

advection and diffusion processes affected by soil texture,

land cover, and vegetation type as well as general climate

conditions. In addition, SSM and root-zone moisture are

often highly correlated (Ford et al. 2014; Qiu et al. 2014),

with some exceptions, such as very dry conditions

(Hirschi et al. 2014). Thus, in many applications a strong

relationship between surface and root-zone moisture and

fluxes exists. In particular, analysis of flux tower data has

shown that surface soilmoisture’s information content for

predictive water and energy flux partitioning is equivalent

to that of soil moisture integrated over a larger depth on

the time scale of remotely sensed observations (2–3 days;

Qiu et al. 2016).

Soil moisture dynamics determine landscape hydro-

logical regimes and water/energy limitation through

control of surface energy partitioning. Frequent global

remotely sensed estimates of SSM allow us to identify

these hydrological regimes by characterizing dry-down

and water-loss processes.

Over large areal scales, the storage and dynamics of

soil moisture within a homogeneous active layer of

depth Dz (L) can be described as

Dz
du

dt
5 I(t)2ET(u)2D(u)5 I(t)2L(u) , (1)

where u is the volumetric water content, I is infiltrating

precipitation flux (L T21) here set equal to actual pre-

cipitation (L T21), ET is evapotranspiration (vegetation

transpiration and bare soil evapotranspiration) loss

(L T21), and D is the drainage loss from the volume

(LT21). The total water lossesL are defined as the sumof

drainage or leakage out of the soil and evapotranspiration

(ET1D). Parameter L is a function of the coupled at-

mospheric and terrestrial processes acting on surface soil

moisture; in this study, however, we specifically in-

vestigate the primary control of water availability on the

loss function under mean climate state, L5L(u). Using

remotely sensed observations of surface soil moisture,

L(u) can be estimated to first order at a given location.

Therefore, L(u) is a function that will be identified based

on the entire available record of soil moisture.

Probabilistic modeling of soil water balance shows

that the exact form ofL(u) is a key determinant of water

balance dynamics (Dralle and Thompson 2016; Feng

et al. 2012). Note that this conceptualization applies to

average losses over large scales—on the order of tens of

kilometers relevant to weather and climates model as in

Dirmeyer (2000)—in which net lateral fluxes are small

compared to vertical infiltration, evapotranspiration,

and drainage losses.

An idealized soil water loss function is typically char-

acterized as a three-stage piecewise function (Rodriguez-

Iturbe and Porporato 2007; Feng et al. 2017) as seen in

Figs. 1a and 1b. Soil moisture dynamics following a rain

event depend on the prior history of soil moisture and its

current state. During and after precipitation the wet soil

initially loses water rapidly due to percolation to the sub-

surface. If under gravity drainage, the loss is initially gov-

erned by the hydraulic conductivity and gradient

in hydraulic head, both of which are functions of soil vol-

umetric water content. Drainage dominates until the

volumetric water content is lowered to the field capacity

ufc, at which point drainage becomes negligible. Post-

precipitation, the evapotranspiration from moist soils is

considered to be initially in ‘‘Stage I,’’ or an energy-limited

regime. During this period, evapotranspiration is in-

dependent of volumetric water content, and hence the

contribution to the loss function fromevapotranspiration is

determined by the potential evapotranspiration rate such

that du/dt is constant under steady weather conditions.
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The soil may dry further until it reaches a threshold value

u*, a transition point between water- and energy-limited

hydrologic regimes. Any further loss, thereafter, is due to

evapotranspiration in the water-limited regime, termed

‘‘Stage II.’’ Below u*, evaporative loss is a monotonically

decreasing function with decreasing soil moisture. The

drainage and Stage I regimes can coexist leading to a dis-

tinct condition, and it is addressed in this study.

The ability to reconstruct the soil moisture loss function

and to identify different hydrologic regimes solely based

on observations shows promise. The approach comple-

ments prior methods that rely on model outputs. For ex-

ample, using atmospheric general circulation models

(AGCMs) and placing prior transition criteria on soil

moisture and evaporations rates, Koster et al. (2009)

identified different hydrological regimes globally for the

Northern Hemisphere summer (JJA) over a 10-yr record.

More recently, Schwingshackl et al. (2017) examined

spatiotemporal variations in land–atmospheric coupling

and hydrologic regimes using different reanalysis data

[i.e., Modern-Era Retrospective Analysis for Research

and Applications, version 2 (MERRA-2), and Global

Land Evaporation Amsterdam Model (GLEAM)]. They

proposed amodel-selection process to arrive at piecewise-

linear functions relating soil moisture to model-based es-

timates of evaporative fraction (EF) and similar to Koster

et al. (2009) generated seasonal global maps of different

hydrologic regimes.

In contrast, the analysis outlined in this manuscript is

purely data driven and uses only remotely sensed soil

moisture information. First, the soil water loss function

L(u) is reconstructed via analysis of soil moisture dry-

downs over the continentalUnited States under spring and

summertime climate conditions (May–September). Then,

the loss function and its transition points (uw, u*, ufc) are

used to partition SMAP-observed soil moisture into dif-

ferent dominant hydrological regimes, that is, water or

energy limited.

FIG. 1. (a) Canonical three-stage soil moisture dry-down.During interstorms (postprecipitation) the dry-down rate occurs at a rapid rate

under drainage until the volumetric soil water content reaches its field capacity. After this time the soil is still moist enough to be under the

energy-limited (Stage I) evapotranspiration regime until the volumetric soil water content reaches a critical value u*. During this period,

the evapotranspiration rate equals the climatic potential evapotranspiration, and the dry-down rate is closer to linear. Below the critical

u*, the dry-down rate is controlled by soil moisture (Stage II or water-limited evapotranspiration regime). The rate of dry-down is below

linear and ultimately diminishes to zero. (b) Loss function: Stage II evapotranspiration for moisture levels below the critical value u*,

Stage I evapotranspiration and no sensitivity to soil moisture for intermediate wetness levels (u*# u# ufc), and percolation or drainage

dominant regime above the field-capacity ufc. In (b) the horizontal dashed line represents the mean climatological potential evapo-

transpiration rate dependent on available energy and atmospheric evaporative demand (Rodriguez-Iturbe and Porporato 2007). (c) An

example in situ USCRN soil moisture time series sampled at 0600 LT daily (Austin, TX). (d) Soil moisture dry-downs, with zero pre-

cipitation in between observations are identified. The dry-down cutoff after 15 Aug is due to near-zero increments and is smaller than the

detection threshold. (e) The loss function L(u) is the negative gradient of these dry-downs, with gray dots indicating an observed Du dry-
down, i.e., the difference between neighboring red dots in (c). The times series plot in (c) shows 2015 only, while the side plots (d) and

(e) include data from 2016 and 2017 as well.
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Naturally, when leveraging data-only techniques,

certain simplifying assumptions must be made, and

some limitations are inherent. SMAP reports surface

soil moisture on the order of tens of kilometers. This is

due to the effective field of view of SMAP constrained

by the instruments’ half-power, or23 dB, sampling area

on the surface of Earth (approximately 30–40 km).

Therefore, subpixel landscape heterogeneity—both in

vegetation and soil texture types—will be averaged into

an effective landscape surface soil moisture value. This

feature may also mask, or diminish, finer-scale pro-

cesses, for example, subpixel presaturation runoff.

In the water balance equation of (1), all soil water

losses are jointly considered. In this context, individual

contributing fluxes, that is, evaporation, transpiration,

or even runoff, cannot be separated. These processes are

not ‘‘seen’’ by the soil moisture observations and require

external modeling or ancillary data to capture or ap-

proximate. This is because SMAP only senses surface

soil moisture (approximately 5 cm but variable de-

pending on the soil moisture and temperature profile)

dynamics. Furthermore, soil water losses are, in general,

affected by a range of soil texture, vegetation, and cli-

mate conditions. In fact, at the larger spatial scales under

consideration, these factors are all inherent within the

soil moisture dry-down process. Individual dry-down

characteristics for a fixed location will be different and

will reflect varying atmospheric and vegetation condi-

tions. From a remotely sensed soil moisture perspective,

these factors are unobserved, considered latent pro-

cesses, but are all encoded within the dry-down process.

Therefore, similar to Koster et al. (2009), we consider

the average, or effective, behavior over the period of

study and at the observed SMAP spatial resolution. The

expectation to address each individual driving factor is

beyond the current scope of the manuscript.

We aim to present a simple methodology to maximally

extract information from the soil moisture time series and

then identify different hydrologic regimes. The use of

ancillary data or models is avoided. This is to prevent

‘‘signatures’’ of ancillary data or models biasing outputs

or overshadowing information inherent in the soil mois-

ture time series. Additionally, we place no prior con-

straints or criteria on transition points as they will be

inferred from observations. Currently, the use of these

parameters as inputs into land surface models (LSMs) or

global climate models (GCMs) is not recommended. By

extension of the method globally, and for longer periods

of time, this feature can be examined more carefully.

Section 2 describes the source soil moisture and sup-

porting data used in this analysis. Section 3 first discusses the

loss function estimation process—via analysis of soil mois-

ture dry-downs—and then presents an unsupervised

classification approach, with cross validation, which labels

different regions as either being in a water-limited, energy-

limited, or transitional regime determined by its overall loss

function and a ‘‘best-fitting’’ canonical model. Results and

analysis are presented in section 4, where we examine

temporal dynamics of different hydrologic regimes. The

time frameof the study includes three consecutiveNorthern

Hemisphere spring and summer seasons (May–September

2015, 2016, and 2017) at about 36-km resolution.

2. Data sources

a. Soil moisture and precipitation data

Global surface soil moisture estimates are available

from the polar-orbiting NASA SMAP satellite mission

(Entekhabi et al. 2010) launched in early 2015. To date,

SMAP provides soil moisture estimates with a nominal

1–3-day global coverage depending on latitude. SMAP-

derived soil moisture data products undergo frequent

and extensive calibration and validation (Chan et al.

2016) in the form of large-scale analysis with respect to

many in situ and ground-based soil moisture observing

networks. Since SMAP operates at L band (1.41GHz),

soil moisture estimates typically represent an inte-

grated depth of moisture 50mmwithin the topsoil. This

study uses the descending overpass or 0600 local time

SMAP 9-km enhanced radiometer-only soil moisture

product (O’Neill et al. 2016). Data from the first three

years of operation of SMAP, spanning the Northern

Hemisphere’s spring and summer months, that is, May–

September 2015, 2016, and 2017, are combined and used

to derive estimates of the loss function.

To minimize the impact of retrieval uncertainty, data

quality control is performed prior to the analysis. Pixels

affected by radio frequency interference (RFI), frozen

soils, or snow cover, as well as those with larger than 1%

water fraction, are removed. In addition, regions with

high vegetation density and water content (.7kgm22)

are also excluded. The latter is due to the high uncertainty

in retrieving soil moisture under these conditions. Water

fraction and vegetation water content information are

readily available from SMAP and are extracted from the

soil moisture product, that is, L3SMP_E. Note that the

accuracy of soil moisture data is typically inversely pro-

portional to attenuation due to vegetation, that is, vege-

tation water content, and SMAP places a 5kgm22

threshold on soil moisture products. In this study, we in-

creased the vegetation threshold to 7kgm22 to expand

the spatial domain of the study and also because the exact

threshold level is application dependent.

Daily surface precipitation estimates (mm day21) are

obtained from the Climate Prediction Center’s Uni-

fied (CPCU) gauged-based daily precipitation dataset
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(NCAR 2017). CPCU precipitation is reprocessed from a

0.58 grid (approximately 27km at the equator) to the

SMAP 9-km grid and is utilized as an indicator of the

presence, or absence, of precipitation in between SMAP

SSM estimates. Only soil moisture dry-downs with less

than 1mm of precipitation in between measurements are

used to estimate the loss function.

Additionally, as a means of comparison and context,

we use a few soil moisture time series from the U.S.

Climate Reference Network (USCRN) climate moni-

toring stations (Bell et al. 2013) and apply the same loss

function classification technique.

b. Climate and soil data

Ancillary climate data, independent from SMAP, are

used to analyze and interpret loss function properties.

They are not used in the estimation of the loss functions,

but rather as diagnostics. Climate data are used to define

an aridity index (AI; dimensionless) at 36-km resolution

over the contiguous United States (CONUS) for the

duration of this study. TheAI follows the United Nations

Environment Programme (UNEP) definition (Middleton

and Thomas 1992) as the ratio between average pre-

cipitation P (mm day21) and potential evapotranspira-

tion (PET;mmday21), that is, AI5P/PET. Based on this

ratio, AI is then labeled as hyperarid (AI , 0.05), arid

(0.05 , AI , 0.2), semiarid (0.2 , AI , 0.5), dry/

subhumid (0.5 , AI , 0.65), and humid (AI . 0.65).

Potential evapotranspiration and precipitation variables

are extracted from the Global Land Data Assimilation

(GLDAS) Noah 2.1 data products (Beaudoing and

Rodell 2016) and reprocessed to the SMAP 36-km grid.

SMAP also provides soil texture data (Das 2013) in

the form of sand and clay fractions along with bulk

density information at the same spatial resolution as the

corresponding soil moisture product. This same soil

texture partitioning is used within the SMAP soil

moisture retrieval algorithm. In this study, we extract

the 36-km sand fraction information in order to examine

the dependency of loss functions and their shapes.

3. Estimation of the soil moisture loss function

a. Loss function and dry-downs

Within the land water budget, increases and decreases

in soil moisture encode information about different

hydrological fluxes and processes. Therefore, separately

analyzing positive changes, or increments, and negative

increments can assist in isolating the effects of individual

fluxes. With the exception of very large scale irrigation,

we attribute increases in observed soil moisture to input

precipitation, and decreases to evaporative losses and

drainage.McColl et al. (2017a) exploited the fact that, at

ecosystem scales, positive soil moisture increments are

usually due to precipitation and thus quantified the

percentage of precipitation that is captured in the dy-

namics of SMAP-observed surface soil moisture. Under

stationary conditions, the positive and negative in-

crements have nearly identical mean values, but their

higher-order moments may differ considerably, since

they encode information on different fluxes.

This study focuses on the losses or negative changes in

surface soil moisture based on the method presented in

Akbar et al. (2018). In the absence of or after pre-

cipitation, the loss of moisture from the surface layer

due to evapotranspiration and drainage, that is, L(u), is

encoded in the dry-down behavior of soils. These dry-

downs are manifested as consecutive and incremental

decreases in the amount of soil moisture, that is, the

negative temporal differences of soil moisture dry-

downs. Figure 1c presents an example of this process

where a time series of in situ USCRN surface soil

moisture is shown along with consecutive negative

(Du, 0) increments [Du5 u(t1 1)2 u(t)] identified

from dry-downs (shown in red). The rate of loss can be

estimated from negative-only increments, defined as

Du2 5

�
Du(t), if Du, 0

0, otherwise
,

and the loss function L(u) is approximated by condi-

tioning the rate of negative increments with respect to

soil moisture itself (Akbar et al. 2018):

L(u)’E

�
2Dz

Du2

Dtobs

����u
��

mm

day

�
, (2)

where E[ ] is the expectation operator, Dtobs is the observa-
tion time interval between consecutive negative increments,

and Dz is the depth scale of SMAP volumetric soil moisture

estimates and is set to 50mm. The depth scale Dz scales the
loss function in (2), such thatL(u) is in flux units (L T21). Its

specificationdoesnot affect the shapeof the loss functionnor

its inflection points. As long as the surface moisture char-

acterizes the hydrological state of the landscape, that is,

temporal dynamics at the same location, then the dynamics

of evaporative regimes—the goal of this paper—are consis-

tently estimated. In landscapehydrologydrainage lossesmay

ultimately manifest in transpiration or stream outflow.

However, in this study we only consider instantaneous soil

water losses, calculated using (2). The method does not

perform integrated water balance over time. Therefore, in

this context, we consider drainage as the rapid loss of mois-

ture from the control volume when the soil is wet. The ap-

proach toward obtaining loss functions is as follows:
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1) Using the available soil moisture time series, for

each 9-km SMAP pixel, dry-downs with less than

1mm day21 of precipitation in between observation,

that is, P(t)# 1mm day21 between Dtobs, are extracted
(e.g., Fig. 1d). Similar to McColl et al. (2017b), dry-

downs and increments less than 1% of the range of

observed soil moisture are excluded.

2) Incremental and instantaneous soil water losses,

2Dz(Du2/Dtobs), are then calculated.

3) For each 36-km SMAP grid, individual losses from

all valid 9-km pixels within the larger grid are

aggregated and collected together. In other words,

we simply collect all data within a 36-km grid cell.

The aggregation to coarse resolution will increase

subpixel heterogeneity in terms of weather, vegeta-

tion, and texture conditions and has the potential to

diminish and mask finer soil or climate-induced

inflection points and features (Saleem and Salvucci

2002). However, for a range of conditions this

approach is suitable for climate scale analysis, given

that GCM grid resolutions are on the order of

50–100 km.

4) Finally, the overall shape of the loss function is recon-

structing by conditioning negative increments with re-

spect to soil moisture itself, E[2Dz(Du2/Dtobs)ju]. The
result is a function of soil moisture (the loss function)

that is basedon the entire observed soilmoisture record.

Results and analysis (section 4) will be presented at a

36-km spatial resolution

Individual soil moisture dry-downs, in general, are

affected by a wide range of soil texture, vegetation, and

general climate conditions. Such driving factors are, in

fact, inherent and captured within the dry-down process.

This feature is apparent in Fig. 1d, where the collection

of dry-downs are dissimilar, indicating that atmospheric

boundary conditions are implicitly encoded. The meth-

odology outlined here aims at capturing an overall, or

effective, first-order data-driven estimate of the soil

moisture loss function over a period of time. While

naturally other ancillary data or modeling efforts can be

introduced, we intentionally avoid doing so. In this

manner, we avoid biasing or contaminating the final loss

function characteristics by ‘‘signatures’’ of the ancillary

data and maximally extract information solely from soil

moisture observations.

Therefore, the capacity to reconstruct loss functions

rests on the ability to detect a sufficient number of soil

moisture dry-downs. The spatial resolution of the soil

moisture product has a lesser effect. We also note that

because of SMAP’s orbit and measurement scheme,

certain shortcomings do exist. As discussed earlier, the

vertical support of SMAP soil moisture observations is

limited to the topsoil (50mm); therefore, soil moisture

dry-downs may be predominantly evaporation driven.

In addition, drainage, or leakage, into the soil is a rapidly

occurring process. Given the nominal 3-day sampling

frequency of SMAP, the likelihood of detecting a com-

plete leakage process, that is, the power-law shape in

Figs. 1a and 1b, is diminished. Furthermore, the distri-

bution of observed soil moisture is climatologically de-

termined and rarely spans the range from wilting point

to porosity; loss functions can only be estimated over the

range of observed SSM states. Nevertheless, this tech-

nique provides a first-order approach to estimateL(u) at

scales relevant to climate studies. The following sections

will discuss the shape and form of these loss functions.

b. Loss function shape classification

Loss functions take on different shapes over different

hydroclimates. At global and continental scales, exam-

ining the shape and form of individual loss functions is

impractical. Therefore, to address this, a shape-based

categorical classification scheme is implemented to

identify and label different pixels based on their un-

derlying soil moisture loss function. We first define a set

of piecewise-linear models M(Q) labeled according to

Fig. 2, such that each model is a representation of dif-

ferent segments of the idealized loss function seen in

Fig. 1b. Our focus is on identifying the dominant hy-

drologic regimes based on the governing soil moisture at

any time relative to the identified local soil moisture

transition values. The term Q is the vector of model

breakpoints, in volumetric soil moisture units (m3m23),

which determine the soil moisture transition points

uw, u*, and ufc of Figs. 1a and 1b. These breakpoints will

vary based on the dynamic range of observed soil

moisture, rates of dry-down, soil texture, and overall

climate conditions, and in general define the water- and

energy-limited regimes. No prior constraints or condi-

tions are placed on these parameters, and they are de-

rived entirely from the classification approach. The

prime (0) notation in Fig. 2 is used to distinguish be-

tween the transition points derived in Fig. 1 and our

classification-based estimates. Detailed mathematical

descriptions of each of the six canonical models are

given in Table 1.

The classification procedure is as follows: a least

squares optimization between each of the canonical

models and observed loss data L(u) is performed to

obtain estimates of the mean squared error (MSE) and

associated model parameters Q̂. This least squares

model fitting is embedded within a 10-fold cross vali-

dation (CV) routine (Friedman et al. 2001; James et al.

2014) with 30 Monte Carlo replicates, that is, 10 3 30

model–data fittings for each canonical shape. Cross
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validation partitions and splits the data into different

segments, such that 90% of the data are used within

the least squares routine and 10% are used to assess

the performance of each model. For a single canonical

model, the mean MSE score and one standard error

(1-SE) across all 300 iterations, that is, permutation of

data splits, is reported. The 1-SE is calculated as

SE5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var(MSE1, . . . ,MSEN)

p
/N, whereN5 10 (James

et al. 2014) and is later used to discriminate between

models with similar mean MSE scores.

For each of the canonical models in Fig. 2, the CV

process is performed multiple times across different

partitions of the data to arrive at a set of meanMSE and

1-SE scores for each model, that is, MSEA
mean, MSEB

mean,

etc. The procedure to determine the most representa-

tive, or optimum, model is as follows:

FIG. 2. Six canonical forms used to identify and classify SMAP-derived loss functions L(u). Note the primed distinction of the x- and

y-axis transition points, for example, u0w, u
0
*, and the actual parameters in Fig. 1. These parameters, in general, will vary based on soil

texture, land cover, and climate conditions, and each are only determinable given a suitable dynamic range of soil moisture. Classes A

and D are differentiated based on the value of the x-axis intercept point, such that Class A is assigned if u0w , 0.15; otherwise, Class D is

assigned.

TABLE 1. Mathematical description of the loss function canonical forms.

Canonical form Physical process Equation

Class A Stage II evapotranspiration L(u)5 s1(u2 u0w)
Class B Stage I potential evapotranspiration EPT L(u)5EPT for all u

Class AB Stages I and II L(u)5

�
s1(u2 u0w) u# u0*

EPT u$ u0*

Class ABC Stage I, II, and percolation L(u)5

8><
>:

s1(u2 u0w) u# u0*
EPT u0*# u# u0fc

EPT 1 s2(u2 u0fc) u$ u0fc

Class BC Stage II and percolation L(u)5

(
EPT u# u0fc

EPT 1 s2(u2 u0fc) u$ u0fc
Class D Same as Class A u0w . 0:15 L(u)5 s1(u2 u0w) u

0
w . 0:15
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1) The model with the smallest mean MSE score across

all six canonical forms is initially selected as the

optimum model.

2) If, within 1-SE of the optimum model, an alternative

model exists that (i) is simpler (i.e., has fewer param-

eters) and (ii) has a smaller 1-SE, then this alternative

FIG. 3. (left) Pixel-level soil moisture time series and (right) loss function classifications for (a),(c) SMAP and (b),(d) USCRN in situ

sensor sites sampled at 0600LT daily. The redmarkers in the soil moisture time series plots represent the identified dry-downs used for loss

function classification. In all right panels, small gray markers refer to the individual losses, E[2Dz(Du2/Dtobs)ju], which are then grouped

into nine equal-count bins (red markers with standard deviation error bars). The thick black line is the best-fitting canonical model as

determined via the cross-validation process. The inset figure shows the relativemagnitude ofMSEs, wherein the selectedmodel is colored

red. The gray shaded area is the 1-SE interval (approximately 1/3 of standard deviation error bars).
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model replaces the optimummodel.Over theCONUS,

for approximately 11% of pixels the alternative model

was chosen. No spatially coherent patterns were ob-

served for regions where this occurred.

Once the optimum model is chosen, the correspond-

ing pixel is assigned a label (Class A, Class B, etc.)

denoting the selected loss function shape and its un-

derlying physical process (Stage II, Stage I, etc.). The

associated model parameters are also extracted and

later used to determine the various hydrological re-

gimes. For example, Stage II evapotranspiration is

reported with a zero-loss intercept point u0w and slope

s1 [mm day21 (m3 m23)21]. The model selection process

outlined above is similar to the recent efforts by

Schwingshackl et al. (2017) to examine and quantify

evaporative fraction versus soil moisture relationships.

The parameter optimization and model assessment

process is demonstrated in Fig. 3 for two different re-

gions within the United States: Arizona and northern

Oklahoma. The figures include examples from both

SMAP (Figs. 3a,c) and in situ sensor data from the

USCRN (Figs. 3b,d). In all plots, the 2015-only soil

moisture time series is shown along with identified dry-

downs (red markers) and precipitation (blue bars). The

right panels show the corresponding individual losses

L(u) (red marker for all three years), as determined by

(2). The thick black lines are based on the CV process

outcome and denote the optimum and selected loss

functions. The smaller inset plots in all figures show the

relative magnitude of the mean MSE score for the dif-

ferent canonical model fits. The error bars denote the

standard deviations of theMSE scores across all CV folds,

that is, 300 iterations, and the thinner gray bars are the

1-SE of the optimum model (marked in red). Figures 3a

and 3c are SMAP-derived loss function for regions in

Oklahoma and Arizona, respectively. Figures 3b and 3d

are similar, but for the closest USCRN in situ soil mois-

ture sensors sites sampled at 0600 LT daily.

Figure 3 also highlights the importance of temporal

sampling when classifying loss functions. Depending on

latitude, SMAP has a 1–3-day temporal sampling rate.

When more frequent sampling can be achieved, the loss

function classification technique is able to reconstruct a

more complete canonical form. This is evident in Fig. 3b,

where the drainage, or percolation process, is re-

constructed given the daily USCRN measurements,

while in Fig. 3a this was not possible; the process was not

observed. Note, however, that both plots yield the en-

ergy- and water-limited segments of the loss functions.

On the other hand, examples in Figs. 3c and 3d (both in

Arizona) only reconstruct the Stage II water-limited

regimes. In general, across the CONUS, this can be

attributed to either the absence of other processes, such

as Figs. 3c and 3d, or very rapid short-lived events. In

these examples, the transition points and plateau (Stage I)

are not comparable because of the obvious scale disparity;

SMAP is 36km while the in situ station is a point mea-

surement. Furthermore, given the dynamic nature of soil

moisture, and its dry-downs, it is not equally distributed

within each hydrologic regime. In latter sections, we focus

only on dominant hydrologic segments where the time

series of soil moisture persists more frequently.

This model selection process is applied over the

CONUS and, where applicable, the x-axis transition

points (u0w,u
0
*, and u0fc), the linear segment’s slopes, and

constant plateau values are also extracted. The soil

moisture transition points are then used to identify the

different hydrological regimes by partitioning the

SMAP-observed soil moisture time series.

c. Sensitivity of classification to measurement noise

The loss function classification process is susceptible

to noise and uncertainty, especially noise inherent in

SMAP soil moisture products that in turn affect soil

moisture dry-downs and the ability to estimate moisture

losses. To examine the robustness of our classification

algorithm to this noise, a Monte Carlo simulation study

is performed using real precipitation data and two pre-

scribed loss function shapes as follows:

1) Noisy time series of soil moisture are simulated

using a simple hydrological model based on (1):

u
n
(t1 1)5 u(t)1

P(t)

Dz
2L(u)1 d , (3)

where d is zero-mean Gaussian noise with standard

deviation s, that is, d;N(0,s2), and is applied at

every instance of time or measurement to mimic the

SMAP instrument. The model is forced with

observed daily precipitation P(t) (mmday21). The

subscript n denotes noisy soil moisture. In this

experiment, the soil moisture time series from (3) is

subsampled to every 3 days to be consistent with the

SMAP temporal sampling. We manually define two

loss functions in the form of (i) a single Stage II

evapotranspiration (Class A) and (ii) a combined

transitional Stage II to Stage I form (Class AB).

2) Equation (2) is used to estimate individual losses

from the noisy time series L(un).

3) The loss function classification and CV process are

performed on data points obtained in (2). Naturally,

because of the influence of noise, the classification

can erroneously differ from the ‘‘true’’ prescribed

loss function.
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4) Steps 1–3 are repeated 50 times in a Monte Carlo

fashion for six different noise levels. Last, for each

noise level and across all 50 iterations, the classifica-

tion accuracy is calculated and reported as

Accuracy5
Number of timesL(u) is correctly identified

Number of iterations

3 100.

(4)

Steps 1–4 are applied to the two most common loss

functions observed over the CONUS: Stage II evapo-

transpiration and combined Stage I and Stage II.

Figure 4 shows the classification accuracy as a function

of the applied noise standard deviation.As expected, the

accuracy drops with increasing noise, and the mean

MSE scores of the optimummodels increase. This trend

is shown as the increasing marker size (MSE) with in-

creasing noise. In Fig. 4, the vertical dashed line is the

expected median noise standard deviation for an SMAP

observation (Entekhabi et al. 2010) and is set to 0.04m3m23.

This expected error is an SMAP mission requirement,

and SMAP products have been shown to meet this cri-

terionwith respect to in situ ground truth calibration and

validation sites (Chan et al. 2016). Therefore, given

SMAP soil moisture data and the loss function classifi-

cation scheme outlined in the previous section, we

would expect somewhat less than a 20% error in our

reported classification efforts for Class AB loss func-

tions, and substantially less for Class A.

4. Results

a. Loss function classification

The 36-km loss function classification map over the

CONUS for the 3-yr duration is shown in Fig. 5. Based on

the outcome of the classification–CV effort, each pixel is

labeled according to its general water- and/or energy-

limited state. Pixels labeled as ‘‘no weather’’ refer to

areas with no identifiable soil moisture dry-downs, and

pixels labeled as ‘‘mask’’ are excluded because of high

water fraction (.1%) and high vegetation water content

(.7kgm22). See Figs. S1 and S2 in the online sup-

plemental material for plot mean estimates of uw, u*, and

ufc, as well as their associated uncertainty (standard de-

viations). A gradual transition from west to east is ob-

served. Large regions of the western and southwestern

United States are in a primarily Stage II water-limited

domain with strong L sensitivity to u (dL/du) up to

20mmday21 (m3m23)21. This observation is consistent

with field-scale studies in arid and semiarid environments,

where high evaporative demand and bare soil evapo-

transpiration result in rapid loss of soil moisture

(Cavanaugh et al. 2011; Vivoni et al. 2008;Kurc and Small

2007) as well as shorter dry-down time intervals (McColl

et al. 2017b). Across the CONUS, for different climate

zones, the median slope of Stage II evapotranspiration

ranges from 20mm day21 (m3m23)21 in hyperarid areas

to less than 5mm day21 (m3m23)21 for humid regions in

the east (see Fig. S3h). This trend is consistent with the

gradual decrease in the rate of change of evaporative

fraction with respect to soil moisture, that is, ›EF/›u,

based on reanalysis studies from Schwingshackl

et al. (2017).

Parts of the Great Plains show a transitional behavior,

that is, Stage I and II (yellow). The wetterMidwest areas

show a combination of Stages I and II, with some regions

exhibiting an additional drainage-like behavior (green

and light blue, respectively). The eastern and south-

eastern United States show a mixture of different clas-

sifications for neighboring pixels.

Note, however, that behind each pixel is a dynamic

soil moisture time series partitioned into the water- and

energy-limited segments over time. As will be apparent

in the next section, to resolve this pixilation and mixture

issue, we use the percentage of time of SMAP obser-

vation within each segment (Stage I, Stage II, etc.) to

identify the dominant hydrologic regimes. This effort

yields more spatially uniform and consistent hydrologic

regimes.

FIG. 4. Loss function classification accuracy with respect to noise.

Two loss functions aremanually prescribed, and noisy soil moisture

time series are simulated. The vertical dashed line is the expected

uncertainty associated with SMAP soil moisture data. The in-

creasing marker sizes indicate a large MSE score and thus poor

model–data fits with respect to increasing noise. Amisclassification

error less than 20% is expected.
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As a measure of confidence in both the hydro-

climatological loss function classification and parameter

estimate process, Fig. 6 shows the MSE score and corre-

lation R2 of the optimum loss function model with respect

to the observed losses. The largest errors are concentrated

in the U.S. Midwest. In these regions, soil moisture dry-

downs are irregular due to rapid crop growth, irregular

summertime precipitation patterns, and unknown irriga-

tion inputs. The R2 between observed losses and the op-

timummodel is highest in the drier regions of the southern

and southwestern United States, where derived loss func-

tions are typically linear and monotonically increase with

respect to increasing soil moisture, that is, Stage II. An

apparent striping pattern is visible in Fig. 6a, especially in

southern Texas. In these areas when calculating the MSE

score, the variable samples, that is, 1/N division, becomes

more apparent. This is due to overlapping SMAP half-

orbits. These features are not present nor affect the same

locations in the classification map of Fig. 5.

The same analysis outlined thus far was also performed

at the 9-km spatial resolution (figure not shown). The

spatial patterns of the 9-km classification map and

the 36-km map (from Fig. 5) are consistent. However, the

higher-resolution classification map shows increased pixi-

lation due to increased finer-resolution vegetation and

water fraction filtering and is not presented in this study.

b. Characteristic dry-down time scales

A characteristic dry-down time scale, in days, from the

Stage II slope {s1 [mm day21 (m3m23)21] in Table 1}, can

be calculated asDz/s1, shown in Fig. 7, whereDz5 50mm.

Here, we observe that the median soil moisture charac-

teristic decay time scale gradually increases with increasing

wetness, from approximately 3 days in hyperarid regions of

the Southwest to 7 days in the more humid areas of the

eastern United States. These trends are consistent with

McColl et al. (2017b), where characteristic dry-down time

scales, at a global scale, were determined via exponential

model fitting and span from approximately 11 days for

wetter regions to 3 days for highly arid environments. Note

that these time-scale estimates are shorter than soil mois-

ture memory and persistence time scales in Katul et al.

(2007) and Ghannam et al. (2016), for example, 7 days, or

months in the case of Delworth and Manabe (1988). The

discrepancies stem from the fact that here, similar to

McColl et al. (2017b), we consider only the surface soil

moisture content with a nominal vertical support depth, or

storage depth, of 50mm. Prior studies typically evaluate

time scales using the entire root-zone soilmoisture profiles,

up to 1000mm. Therefore, faster surface soil moisture

dissipation from a shallower support depth is expected.

Additionally, Shellito et al. (2016) have reported faster

SMAP dry-downs with respect to in situ soil sensors. The

reported discrepancies stem fromdifferences in the SMAP

sensing depth—nominally 50mm—relative to in situ sen-

sors and also differences in the spatial support of the dif-

ferent measurements. Nevertheless, observed trends are

generally consistent such that hyperarid and arid regions

have the highest rate of surface moisture loss. While the

rate and spatial pattern for the Stage II slope is similar to

the evaporative fraction versus soil moisture rates of

Schwingshackl et al. (2017), the actual amount of moisture

FIG. 5. Soil moisture loss function classification over the CONUS. Masked regions due to

high vegetation (.7 kgm22) and more than 1% water fraction are labeled as ‘‘VWC 1 WF

Mask’’ and shown in light gray. Regions marked as ‘‘NoWeather’’ (gray) are areas where no

dry-downs were detected.
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loss might differ. This is because only surface soil moisture

with a nominal depth scale, Dz5 50 mm, is considered, as

discussed in section 2.

c. Dominant hydrological regimes

The classification map in Fig. 5 is obtained by the

identification of soil moisture dry-downs, calculating

their negative increments and then finding the optimum

canonical loss function for each pixel. The loss function

is the conditional expectation of negative increments

conditioned on soil moisture itself. At any location, the

estimation of the conditional expectation and its pa-

rameters is based on the combined record of 3 years.

Because of variable precipitation patterns and atmo-

spheric conditions, the dynamic range and temporal

evolution of SMAP-retrieved soil moisture will vary

across different hydrological regimes. Studies exploring

soil moisture persistence—indicative of wet/dry states—

often examine the frequency of occurrence, or spectral

components, of soil moisture above or below predefined

thresholds. Ghannam et al. (2016), for example, de-

termined wet/dry thresholds by relating measured ET to

soil moisture and then investigated the spectral of soil

moisture threshold crossing for various high-frequency

in situ sites with different climate and biome charac-

teristics. In this section, using the loss function classifi-

cation outcomes from Fig. 6 and associated local

parameters, we quantify the fraction of SMAP-observed

soil moisture falling within each of the three hydrolog-

ical regimes listed in Fig. 1.

For each 36-km pixel, using estimates of u0w, u
0
*, and

u0fc, we calculate the percentage of SMAP observations

FIG. 6. (a) MSE and (b) R2 between optimum fitting canonical model and observed losses

L(u). The largest errors are collocated with croplands in the Midwest.
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falling within 1) Stage II or water-limited evapotrans-

piration u0w # u, u0*, 2) Stage I or energy-limited

evapotranspiration u0*# u, u0fc, and 3) drainage or

above field capacity u0fc # u. For each of the cases, pixels

with less than 20% of SMAP observations falling within

the defined process are excluded. We further apply a

two-dimensional moving-average filter across the

CONUS. Partially filled pixels (less than 25%), within

the moving-average filter are excluded. The filtering

allows further analysis focusing on interannual varia-

tions. Hydroclimatic boundaries between large-scale

regions are identified and year-to-year movements of

these boundaries are tracked. This approach also re-

solves the pixilation effect seen in Fig. 6, where neigh-

boring pixels at times show a mixture of hydrologic

processes. By focusing on dominant and present pro-

cesses, Fig. 8 yields more spatially coherent and less

pixelated hydrologic regimes.

Figures 8a–c show the percentage of SMAP observa-

tions falling within the three distinct regions mentioned

above. When categorically combined, Figs. 8a–c yield a

map of the dominant observed hydrological regions over

the CONUS. In general, a west–east gradient is observed

with the drier Stage II process dominating the western half

of the United States. Large parts of the Great Plains and

central United States are observed to be in a transitional

state, and the eastern United States is in a combined Stage

I and/or drainage regime. The spatial distributions of

Fig. 8d are consistent with land surface modeling analyses,

even including some relatively finescale features (Koster

et al. 2009; Schwingshackl et al. 2017); however, the hy-

droclimate regions in Fig. 8 are determined using solely

observations of soil moisture time series.

Using the procedure above, we can identify regional

shifts in the hydrological regimes for each year, that is,

2015, 2016, and 2017. Figures 9a–c are similar to Fig. 8b, but

separated by year. In Figs. 9b and 9c the contour lines

represent the spatial domain of the 2015 hydrological

states. Year to year, we observe small but important

weather-induced changes in regional domains that aremost

noticeable in the western United States. The spatial extent

of hydrological process in the Midwest and eastern United

States do not vary significantly. Two western regions

showing amix of Stage I and II processes in 2015 showdrier

conditions in 2016, and a corresponding shift to a dominant

Stage II hydrological regime (see the two sizeable green

‘‘islands’’ in themiddle of the red region across the western

United States in Fig. 9a that disappear in the lower panels).

This occurrence is partly due to application of the moving-

average filter and the consequent exclusion grid cells. From

2016 to 2017 we observe that large parts of the southern

plains (Texas and Oklahoma) revert to a water-limited

state (see the large red region advancing north across the

hydroclimate boundary in western Texas and Oklahoma).

This is attributed to persistent moderate to severe droughts

occurring throughout the summer of 2017 (Svoboda et al.

2002; NOAA 2017; Otkin et al. 2018). Occurrence of per-

sistent extreme droughts, especially in eastern Montana

throughout the summer of 2017, is also partly captured in

Fig. 9c, shownas a large Stage II region. The temperate rain

forest of western and northwestMexico saw above-average

precipitation over the period of study (Blunden and Arndt

2017). Consequently, a large Stage II and I transition do-

main increases from 2015 to 2017. Changes in water

availability—and the corresponding change in hydrologic

regime—are consequential in these regions. Semiarid

transitional areas drive a majority of the interannual vari-

ability in the carbon cycle, with fluctuations primarily

driven by water availability or the secondary effects of

water availability on temperature (Zhang et al. 2016; Jung

et al. 2017).

Figure 9c indicates the presence of persistent moder-

ate droughts in parts of Montana, Wyoming, and the

Dakotas during the summer season of 2017. As a case

study, we examine the temporal change in the dominant

hydrologic regimes over this domain. The 2017 ‘‘flash’’

drought across the region expanded rapidly over the

season. With the expansion of the region in the Stage II

evaporation regime, further drying of soil moisture and

increased sensible heat flux due to reduction of evapo-

ration in Stage II can lead to increased surface temper-

ature, greater evaporative demand, and further drying.

This represents a positive feedback and a contributor to

the intensification of drought. The dynamics of the

‘‘flash’’ drought is accompanied by rapid shifts between

Stage I and Stage II evaporation regimes as detected

based on the SMAP observations and the hydrologic

regimes identification introduced in this study. In

Fig. 10, for each pixel and based on the optimum

FIG. 7. Estimated soil moisture characteristic dry-down time

scale, in days. The time scale is calculated as Dz/s1 (day), where the
slope of Stage II evapotranspiration s1 is derived from the loss

function classification process and given in Table 1. AI is based on

the UNEP definition discussed in section 2b.
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canonical loss function and associated local parameters

(uw, u*, ufc), we estimate the fraction [0, 1] of SMAP

observations falling within the Stage II or Stage I re-

gimes, that is, uSMAP , u* and uSMAP . u*, respectively.

Figure 10 shows the time series change in these fractions

for the entire study domain along with domain-averaged

daily precipitation. Four select snapshots are also shown

highlighting the spatial variation of the areas with

SMAP observations in Stage II. Over the entire domain,

observe the increased spatial extent of Stage II pixels

during dry-downs postprecipitation, for example, be-

tween 14 May and 7 June. Transitions between Stage II

and Stage I due to precipitation events are evident as

well as long-term (approximately a few weeks) persis-

tence in Stage II reflective of drought conditions.

5. Discussion

a. Comparison with other methods

Koster et al. (2017) recently proposed a soil moisture

forecasting technique where the shape of the loss func-

tion is estimated based on a model of soil moisture with

precipitation input and a loss function. The function is

estimated, piecewise, across the soil moisture range by

numerical optimization and matching the dynamics of

SMAP-observed soil moisture estimates over the con-

tinental United States to model outputs. Other methods

include exploiting the statistical properties of stationary

processes (Salvucci 2001; Tuttle and Salvucci 2014) to

estimate the conditional mean loss function E[L(u)ju].
The expected value of a statistically stationary soil

moisture change conditioned on soil moisture itself is

zero. Thus, the loss function in (2) can be estimated as

the conditional expectation of precipitation. Similar to

Koster et al. (2017), this approach also requires pre-

cipitation information, while the technique outlined in

section 2 only uses precipitation as an indicator of the

presence or absence of rain events.

We note that (2) is similar to a recent analysis per-

formed by Shellito et al. (2018), wherein aggregate rates

of soil moisture dry-downs over the CONUS were com-

pared to model-based evapotranspiration rates. Faster

SMAP drying rates—compared to model-based esti-

mates—were reported for both high surface soil moisture

and potential evapotranspiration conditions in addition

to regions with sparse to medium amounts of vegetation.

Additionally, they report minimal dependency of SMAP

soil moisture drying rates with respect to soil texture

FIG. 8. Percent of SMAP observations (20% or more) falling within different hydrological regimes (a) Stage II evapotranspiration

uw # u, u*, (b) Stage I evapotranspiration u*# u, ufc, and (c) above Stage I ufc # u. (d) The categorical map of these dominant and

observed regimes over three consecutive spring and summer periods.
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across the CONUS. Estimated values of uw and u* de-

rived from the classification scheme exhibit variations

with respect to soil texture (see Fig. S3). Median values of

uw and u*, in general, decrease with increasing sand

fraction across the CONUS. Median values of ufc also

show slight dependency on sand fraction, but the exact

dependency is inconclusive since the spatial domain

where ufc is estimated is limited. Shellito et al. (2018) also

FIG. 9. Dominant observed hydrological regimes partitioned into (a) 2015, (b) 2016, and

(c) 2017 May–September months. The thick contour lines in (b) and (c) are the domain

boundaries of 2015 overlaid on the other years to highlight changes in the different hydro-

logical regimes.
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identified a spatial-median soil moisture transition point

u* of 0.15m3m23 over the CONUS compared to our

median values of 0.18m3m23. Additionally, our mean

estimates of u* (Fig. S1b) over the United States are

consistent with reanalysis studies from Schwingshackl

et al. (2017). They report an east–west gradient in u* with

smaller values in the west (approximately 0.15m3m23)

and up to 0.4m3m23 in the east. The important difference

is that u* values from Schwingshackl et al. (2017) are

model based, while here the loss function transition

points are all estimated from surface soil moisture alone.

Furthermore, for the top 50mm of surface soil moisture

storage volume, they report evaporative efficiency and

drying rates exhibiting mostly a linear response to

changes in soil moisture, thus indicative of a more water-

limited behavior. In our analysis, water-limited states

cover the majority of the western and central United

States; however, wetter and transitional hydrological re-

gimes are also observed in theMidwest andGreat Plains.

b. Limitations

The spatial resolution of SMAP is constrained by the

half-power, or 23dB, beamwidth of the instrument’s

antenna (approximately 30–40km) on the surface of

Earth. Because of this observation geometry and the

large spatial scales of SMAP soil moisture, subpixel het-

erogeneity—in terms of variations in vegetation cover

and soil texture—are effectively averaged into a single

soil moisture values. This feature may also mask, or di-

minish, finer subpixel processes that may be dominant at

scales on the order of tens of meters, for example, sub-

pixel presaturation runoff in U.S. Southeast. Neverthe-

less, the focus of this study is on large spatial scales

relevant to climate studies where, similar to Koster et al.

(2009), we consider only effective, or averaged, processes

under mean climate state.

Accurate reconstruction of L(u) requires sufficient de-

tection of soil moisture dry-downs. Infrequent observa-

tions or rapid dry-downs (less than a day) will not yield

adequate negative increments to observe transitions be-

tween the various moisture loss stages. SMAP observa-

tions vary from daily at high latitudes to 3-day intervals at

midlatitudes. As a result, faster processes such as wet soil

drainage cannot be adequately detected. This is evident in

Fig. 3b, where the loss function estimated based on daily

in situ measurements has a clear drainage regime whereas

the loss function based on the SMAP temporal sampling

(2–3 days) cannot characterize this hydrologic regime.

While care is taken to remove and exclude unreliable

SMAP soil moisture retrievals—based on quality flags

and surface conditions—they do contain some random

noise. The noise can lead to a bias in the estimation of

the loss functions. McColl et al. (2017a) provided an

error analysis of soil moisture increments and showed

that larger (more positive or more negative) soil mois-

ture increments are least susceptible to noise. A means

FIG. 10. Dynamics of hydrologic regimes based on 2017 time series of change in the fraction of SMAP observations falling in Stage II or

Stage I, that is, uSMAP , u* or uSMAP . u* across a region includingMontana, parts of the Dakotas, andWyoming; the inset map shows the

extent of the study. The time series of regional mean precipitation is also included. Four weekly-averaged snapshot plots show the spatial

extent of the Stage II–dominated areas. Colors are consistent with Fig. 5.
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to further improve the dry-down detection process (i.e.,

negative increments) is to develop model-based or

predetermined thresholds in the future. That is, negative

increments must meet the condition u(t1 1)2 u(t)# �,

where, for example, � is derived based on modeling

analysis.

Mean estimates and standard deviations of the loss

function transition points (uw, u*, ufc) are shown in

Figs. S1 and S2, respectively. Currently, because of the

short time span of this study, the use of these transition

points as inputs in LSMs or GCMs is not recommended.

They are important soil parameters in physics-based land

surface models. Therefore, they must be estimated using

observations that are not affected by landscape hetero-

geneity, that is, in situ data. Furthermore, if the objective

is to produce a more robust set of transition point pa-

rameters, other data such as soil texture, land use, to-

pography, precipitation, and radiation can be leveraged.

Furthermore, model parameters are often specific to the

structure of the model and not readily transferrable to

another model. A more traditional model calibration

approach may thus be a more robust approach to iden-

tifying parameters for modeling purposes. In this study,

these landscape-scale parameters are intermediate vari-

ables that are ultimately used for the purposes of classi-

fying the dominant hydrologic regimes and their

dynamics.Models and ancillary data are not used in order

to not pass their signatures to the identified map of the

dominant hydrologic regimes. To evaluate models and

perform model intercomparisons, the spatial and tem-

poral patterns of the dominant hydrologic regimes—

rather than parameters themselves—can be effectively

used and compared with observation-only estimates.

6. Conclusions

Using soil moisture estimates from the NASA SMAP

mission, the topsoil water loss function is characterized

over the CONUS for three consecutive spring and sum-

mer periods (May–September, 2015–17) at about 36-km

spatial resolution. The loss function is the conditional

expectation of negative soil moisture time increments

where the conditioning is on soil moisture itself. At

any soil moisture level, the rate of loss (and hence nega-

tive increment) is indicative of the dominant hydrologic

regime. A shape-based classification approach is im-

plemented to 1) detect soil moisture dry-downs with

negligible precipitation in between measurements, 2) cal-

culate soil water losses from successive negative in-

crements of dry-downs to determine the loss functionL(u)

for the entire soil moisture record, and 3) categorize the

observed loss function into known parametric canonical

forms through an intensive cross-validation process. Each

canonical shape is a representation of the different water-

and energy-limited loss regimes, that is, Stage I, Stage II,

transitional, etc. The results presented here are observa-

tion driven. Only SMAP soilmoisture time series are used

to identify the dominant hydrologic regimes without re-

liance on models or ancillary data. Precipitation is used

as a quality control in identifying dry-downs, although the

positive soil moisture increments disrupting series of se-

quential negative increments are themselves a good in-

dicator of the end of an interstorm dry-down period.

The observed loss functions and associated parame-

ters, in general, are consistent with field-scale studies of

the dynamics of soil moisture loss and evapotranspira-

tion as well as recent model-based analyses. Strong de-

pendency on climate is seen across the United States,

notably a clear east–west divide. The western and

southwest United States show large rates of moisture

loss from the surface layer in a Stage II or water-limited

regime with a characteristic decay time scale of about

3 days. For each of the three years of the SMAP record,

we produce maps of large-scale boundaries between

regions with common dominant hydrologic regimes.

Comparisons of the shifts in the boundaries are linked to

interannual variability such as the transition of western

Texas into and out of drought over the 2015–17 summer

seasons. Other shifts in the boundaries related to in-

terannual variability are also evident.

By extension, this method can be applied globally and

over longer periods of time to examine seasonal pro-

gressions and hydrologic transitions as well as investigating

regional and short-lived anomalies. Additionally, analysis

over longer periods (multiple years) of timemay yieldmore

representative loss functions, enabling a better observation-

based approach to examine the role of soil moisture in

controlling land–atmospheric processes. Characterization

of shifts in the boundaries separating regions with common

dominant hydrologic regime canprovide important insights

into how interannual changes in climate can force a shift in

surface hydrologic regimes. These shifts can either re-

inforce or dissipate the climate anomaly (depending on

where the land–atmosphere feedback is positive or nega-

tive). The sign of the feedback can also factor into the rate

of movement of the boundary. Such diagnostics—based on

remote sensing observations alone—can be important tools

in advancing the understanding of land–atmosphere

interactions.
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